If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+6=7
We move all terms to the left:
k^2+6-(7)=0
We add all the numbers together, and all the variables
k^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $
| 4x+4-3x=-8 | | y=-5+70 | | -24=-x+5x | | 5(x-2)=x+20 | | 4x+7x=-88 | | -4(-x+9)+5=2-(-5x-4)-2 | | 4x-16=54+2× | | 3=1/2x+5/2 | | -4(-x+9)+5=2-(-5x-4)- | | (1/2)2x=162 | | 8y-28+8y=180 | | 7(14−28x)=20 | | 3h-7h+11=17 | | -6=x+2-5x | | (1/8)^3x(64^2x+1)=4 | | 4.58+y=2.2 | | 1/3n−4=4/3−1/3n | | 2x-6x+24=4 | | 3=9+c | | 215=5x+10 | | 21x+7=63 | | 14+8n=5n-6 | | 49b^2+1=2 | | 4^x+1–7=14 | | 4x+1–7=14 | | -6+36p^2=10 | | 3b+4b=340 | | 123=3x+4 | | 4+18=7a | | 124=3x+4 | | -6x+16=-7x+30 | | 3x-4=5=+3(2x+1) |